Bibliographie
Anselin, Luc. 1988. Spatial econometrics: methods and models.
Kluwer Academic Publishers.
———. 2010. « Thirty years of spatial econometrics. »
Papers in regional science 89 (1): 3‑26. https://doi.org/10.1111/j.1435-5957.2010.00279.x.
Anselin, Luc et AK Bera. 1998. « Spatial dependence in linear
regression models with an introduction to spatial econometrics, A. Ullah
and DEA Giles (eds.), Handbook of Applied Economics Statistics. »
In Spatial Dependence in linear Regression Models with an
Introduction to Spatial Econometrics, sous la dir. de Aman Ullah,
237‑289. CRC Press. https://doi.org/10.1201/9781482269901-36.
Anselin, Luc, Anil K Bera, Raymond Florax et Mann J Yoon. 1996.
« Simple diagnostic tests for spatial dependence. »
Regional science and urban economics 26 (1): 77‑104. https://doi.org/10.1016/0166-0462(95)02111-6.
Anselin, Luc et Raymond JGM Florax. 1995. New directions in spatial
econometrics. Springer.
Anselin, Luc, Raymond Florax et Sergio J Rey. 2013. Advances in
spatial econometrics: methodology, tools and applications. Springer
Science.
Anselin, Luc et Sergio J Rey. 2014. Modern spatial econometrics in
practice: A guide to GeoDa, GeoDaSpace and PySAL. GeoDa Press LLC.
Apparicio, Philippe et Jérémy Gelb. 2022. Méthodes quantitatives en
sciences sociales : un grand bol d’R. FabriqueREL, Licence CC
BY-SA. https://serieboldr.github.io/MethodesQuantitatives/.
———. 2024. Méthodes d’analyse spatiales : un grand bol d’R.
FabriqueREL, Licence CC BY-SA. https://serieboldr.github.io/MethodesAnalyseSpatiale/.
Apparicio, Philippe, Jérémy Gelb, Anne-Sophie Dubé, Simon Kingham, Lise
Gauvin et Éric Robitaille. 2017. « The approaches to measuring the
potential spatial access to urban health services revisited: distance
types and aggregation-error issues. » International journal
of health geographics 16 (1): 32. https://doi.org/10.1186/s12942-017-0105-9.
Apparicio, Philippe, Anne-Marie Séguin et Xavier Leloup. 2007.
« Modélisation spatiale de la pauvreté à Montréal: apport
méthodologique de la régression géographiquement pondérée. »
The Canadian Geographer/Le Géographe canadien 51 (4): 412‑427.
https://doi.org/10.1111/j.1541-0064.2007.00189.x.
Binbin Lu, Paul Harris, Martin Charlton et Christopher Brunsdon. 2014.
« The GWmodel R package: further topics
for exploring spatial heterogeneity using geographically weighted
models. » Geo-spatial Information Science 17 (2):
85‑101. https://doi.org/10.1080/10095020.2014.917453.
Bivand, Roger, Giovanni Millo et Gianfranco Piras. 2021. « A
review of software for spatial econometrics in R. »
Mathematics 9 (11): 1276. https://doi.org/10.3390/math9111276.
Bivand, Roger, Edzer J Pebesma, Virgilio Gómez-Rubio et Edzer Jan
Pebesma. 2008. Applied spatial data analysis with R. Vol.
747248717. Springer.
Bivand, Roger et Danlin Yu. 2023. spgwr: Geographically Weighted
Regression. s.n. https://CRAN.R-project.org/package=spgwr.
Boogaart, K Gerald van den et Raimon Tolosana-Delgado. 2013.
Analyzing compositional data with R. Vol. 122. Springer.
Brunsdon, Chris, A Stewart Fotheringham et Martin Charlton. 1998.
« Spatial nonstationarity and autoregressive models. »
Environment and Planning A 30 (6). SAGE Publications Sage UK:
London, England: 957‑973.
Brunsdon, Chris, A Stewart Fotheringham et Martin E Charlton. 1996.
« Geographically weighted regression: a method for exploring
spatial nonstationarity. » Geographical analysis 28 (4).
Wiley Online Library: 281‑298.
Calvo, Ernesto et Marcelo Escolar. 2003. « The local voter: A
geographically weighted approach to ecological inference. »
American Journal of Political Science 47 (1): 189‑204. https://doi.org/10.1111/1540-5907.00013.
Chi, Guangqing et Jun Zhu. 2019. Spatial regression models for the
social sciences. SAGE publications.
Dubé, Jean, Julie Le Gallo, François Des Rosiers, Diègo Legros et
Marie-Pier Champagne. 2024. « An integrated causal framework to
evaluate uplift value with an example on change in public transport
supply. » Transportation research part E: logistics and
transportation review 185. Elsevier: 103500.
Dubé, Jean et Diègo Legros. 2014. Econométrie spatiale
appliquée des microdonnées. ISTE Group.
Dubé, Jean, Diègo Legros, Marius Thériault et François Des Rosiers.
2017. « Measuring and interpreting urban externalities in
real-estate data: A spatio-temporal difference-in-differences (stdid)
estimator. » Buildings 7 (2): 51. https://doi.org/10.3390/buildings7020051.
Elhorst, JP. 2014. Spatial econometrics: from cross-sectional data
to spatial panels. springer. https://link.springer.com/book/10.1007/978-3-642-40340-8.
Fotheringham, A Stewart, Chris Brunsdon et Martin Charlton. 2003.
Geographically weighted regression: the analysis of spatially
varying relationships. John Wiley & Sons.
Fotheringham, A Stewart, Martin Charlton et Chris Brunsdon. 1996.
« The geography of parameter space: an investigation of spatial
non-stationarity. » International journal of geographical
information systems 10 (5). Taylor & Francis: 605‑627.
Fotheringham, A Stewart, Wenbai Yang et Wei Kang. 2017.
« Multiscale geographically weighted regression (MGWR). »
Annals of the American Association of Geographers 107 (6).
Taylor & Francis: 1247‑1265. https://doi.org/10.1080/24694452.2017.1352480.
Geary, Robert C. 1954. « The contiguity ratio and statistical
mapping. » The incorporated statistician 5 (3): 115‑146.
https://doi.org/10.2307/2986645.
Gelb, Jérémy et Philippe Apparicio. 2022. « Cyclists’ exposure to
air and noise pollution, comparative approach in seven cities. »
Transportation Research Interdisciplinary Perspectives 14:
100619. https://doi.org/10.1016/j.trip.2022.100619.
Geniaux, Ghislain et Davide Martinetti. 2018. « A new method for
dealing simultaneously with spatial autocorrelation and spatial
heterogeneity in regression models. » Regional Science and
Urban Economics 72: 74‑85. https://doi.org/10.1016/j.regsciurbeco.2017.04.001.
Greenacre, Michael, Marina Martinez-Alvaro et Agustin Blasco. 2021.
« Compositional data analysis of microbiome and any-omics
datasets: a validation of the additive logratio transformation. »
Frontiers in microbiology 12: 727398. https://doi.org/10.3389/fmicb.2021.727398.
Griffith, Daniel A. 1988. Advanced Spatial Statistics: Special
Topics in the Exploration of Quantitative Spatial Data Series.
Kluwer Academic Publishers.
———. 2003. Spatial filtering. Springer.
Griffith, Daniel A., Yongwan Chun et Bin Li. 2019. Spatial
regression analysis using eigenvector spatial filtering. Academic
Press.
Griffith, Daniel A. et Pedro R Peres-Neto. 2006. « Spatial
modeling in ecology: the flexibility of eigenfunction spatial
analyses. » Ecology 87 (10): 2603‑2613. https://doi.org/10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2.
Helbich, Marco et Daniel A. Griffith. 2016. « Spatially varying
coefficient models in real estate: Eigenvector spatial filtering and
alternative approaches. » Computers, Environment and Urban
Systems 57: 1‑11. https://doi.org/10.1016/j.compenvurbsys.2015.12.002.
Isabella Gollini, Binbin Lu, Martin Charlton, Christopher Brunsdon et
Paul Harris. 2015. « GWmodel: An R
Package for Exploring Spatial Heterogeneity Using Geographically
Weighted Models. » Journal of Statistical Software 63
(17): 1‑50. https://doi.org/10.18637/jss.v063.i17.
Kelejian, Harry H et Ingmar R Prucha. 1998. « A generalized
spatial two-stage least squares procedure for estimating a spatial
autoregressive model with autoregressive disturbances. » The
journal of real estate finance and economics 17. Springer: 99‑121.
https://doi.org/10.1023/A:1007707430416.
Kim, Chong Won, Tim T Phipps et Luc Anselin. 2003. « Measuring the
benefits of air quality improvement: a spatial hedonic
approach. » Journal of environmental economics and
management 45 (1): 24‑39. https://doi.org/10.1016/S0095-0696(02)00013-X.
Le Gallo, Julie. 2002. « Econométrie spatiale : l’autocorrélation
spatiale dans les modèles de régression linéaire. » Economie
prevision 155 (4): 139‑157.
LeSage, James P et R. Kelly Pace. 2009. An introduction to spatial
econometrics. 123. CRC Press.
Lu, Binbin, Martin Charlton et A Stewart Fotheringham. 2011.
« Geographically weighted regression using a non-Euclidean
distance metric with a study on London house price data. »
Procedia Environmental Sciences 7: 92‑97. https://doi.org/10.1016/j.proenv.2011.07.017.
Mantel, Nathan. 1967. « The detection of disease clustering and a
generalized regression approach. » Cancer research 27
(2): 209‑220.
Mennis, Jeremy L et Lisa Jordan. 2005. « The distribution of
environmental equity: Exploring spatial nonstationarity in multivariate
models of air toxic releases. » Annals of the Association of
American Geographers 95 (2): 249‑268. https://doi.org/10.1111/j.1467-8306.2005.00459.x.
Moran, Patrick. 1948. « The interpretation of statistical
maps. » Journal of the Royal Statistical Society. Series B
(Methodological) 10 (2): 243‑251. https://www.jstor.org/stable/2983777.
———. 1950. « A test for the serial independence of
residuals. » Biometrika 37 (1/2): 178‑181. https://doi.org/10.2307/2332162.
Murakami, Daisuke et Daniel A. Griffith. 2015. « Random effects
specifications in eigenvector spatial filtering: a simulation
study. » Journal of Geographical Systems 17. Springer:
311‑331.
Pace, R Kelley et James P LeSage. 2008. « A spatial Hausman
test. » Economics Letters 101 (3): 282‑284. https://doi.org/10.1016/j.econlet.2008.09.003.
Paelinck, Jean. 1978. « Spatial econometrics. »
Economics Letters 1 (1): 59‑63. https://doi.org/10.1016/0165-1765(78)90097-6.
Seya, Hajime, Daisuke Murakami, Morito Tsutsumi et Yoshiki Yamagata.
2015. « Application of LASSO to the eigenvector selection problem
in eigenvector-based spatial filtering. » Geographical
analysis 47 (3): 284‑299. https://doi.org/10.1111/gean.12054.
Steimetz, Seiji SC. 2010. « Spatial multipliers in hedonic
analysis: a comment on “spatial hedonic models of airport noise,
proximity, and housing prices”. » Journal of Regional
Science 50 (5): 995‑998. https://doi.org/10.1111/j.1467-9787.2010.00679.x.
Tobler, Waldo R. 1970. « A computer movie simulating urban growth
in the Detroit region. » Economic geography 46 (sup1):
234‑240. https://doi.org/10.2307/143141.
Tsagris, Michail et Giorgos Athineou. 2025. Compositional:
Compositional Data Analysis. s.n. https://CRAN.R-project.org/package=Compositional.
van den Boogaart, K. Gerald, Raimon Tolosana-Delgado et Matevz Bren.
2024. Compositions: Compositional Data Analysis. s.n. https://CRAN.R-project.org/package=compositions.
Wheeler, David et Michael Tiefelsdorf. 2005. « Multicollinearity
and correlation among local regression coefficients in geographically
weighted regression. » Journal of Geographical Systems 7
(2): 161‑187. https://doi.org/10.1007/s10109-005-0155-6.
Wood, Simon N. 2017. Generalized additive models: an introduction
with R. Chapman; hall/CRC.