Bibliographie

Anselin, Luc. 1988. Spatial econometrics: methods and models. Kluwer Academic Publishers.
———. 2010. « Thirty years of spatial econometrics. » Papers in regional science 89 (1): 3‑26. https://doi.org/10.1111/j.1435-5957.2010.00279.x.
Anselin, Luc et AK Bera. 1998. « Spatial dependence in linear regression models with an introduction to spatial econometrics, A. Ullah and DEA Giles (eds.), Handbook of Applied Economics Statistics. » In Spatial Dependence in linear Regression Models with an Introduction to Spatial Econometrics, sous la dir. de Aman Ullah, 237‑289. CRC Press. https://doi.org/10.1201/9781482269901-36.
Anselin, Luc, Anil K Bera, Raymond Florax et Mann J Yoon. 1996. « Simple diagnostic tests for spatial dependence. » Regional science and urban economics 26 (1): 77‑104. https://doi.org/10.1016/0166-0462(95)02111-6.
Anselin, Luc et Raymond JGM Florax. 1995. New directions in spatial econometrics. Springer.
Anselin, Luc, Raymond Florax et Sergio J Rey. 2013. Advances in spatial econometrics: methodology, tools and applications. Springer Science.
Anselin, Luc et Sergio J Rey. 2014. Modern spatial econometrics in practice: A guide to GeoDa, GeoDaSpace and PySAL. GeoDa Press LLC.
Apparicio, Philippe et Jérémy Gelb. 2022. Méthodes quantitatives en sciences sociales : un grand bol d’R. FabriqueREL, Licence CC BY-SA. https://serieboldr.github.io/MethodesQuantitatives/.
———. 2024. Méthodes d’analyse spatiales : un grand bol d’R. FabriqueREL, Licence CC BY-SA. https://serieboldr.github.io/MethodesAnalyseSpatiale/.
Apparicio, Philippe, Jérémy Gelb, Anne-Sophie Dubé, Simon Kingham, Lise Gauvin et Éric Robitaille. 2017. « The approaches to measuring the potential spatial access to urban health services revisited: distance types and aggregation-error issues. » International journal of health geographics 16 (1): 32. https://doi.org/10.1186/s12942-017-0105-9.
Apparicio, Philippe, Anne-Marie Séguin et Xavier Leloup. 2007. « Modélisation spatiale de la pauvreté à Montréal: apport méthodologique de la régression géographiquement pondérée. » The Canadian Geographer/Le Géographe canadien 51 (4): 412‑427. https://doi.org/10.1111/j.1541-0064.2007.00189.x.
Binbin Lu, Paul Harris, Martin Charlton et Christopher Brunsdon. 2014. « The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. » Geo-spatial Information Science 17 (2): 85‑101. https://doi.org/10.1080/10095020.2014.917453.
Bivand, Roger, Giovanni Millo et Gianfranco Piras. 2021. « A review of software for spatial econometrics in R. » Mathematics 9 (11): 1276. https://doi.org/10.3390/math9111276.
Bivand, Roger, Edzer J Pebesma, Virgilio Gómez-Rubio et Edzer Jan Pebesma. 2008. Applied spatial data analysis with R. Vol. 747248717. Springer.
Bivand, Roger et Danlin Yu. 2023. spgwr: Geographically Weighted Regression. s.n. https://CRAN.R-project.org/package=spgwr.
Boogaart, K Gerald van den et Raimon Tolosana-Delgado. 2013. Analyzing compositional data with R. Vol. 122. Springer.
Brunsdon, Chris, A Stewart Fotheringham et Martin Charlton. 1998. « Spatial nonstationarity and autoregressive models. » Environment and Planning A 30 (6). SAGE Publications Sage UK: London, England: 957‑973.
Brunsdon, Chris, A Stewart Fotheringham et Martin E Charlton. 1996. « Geographically weighted regression: a method for exploring spatial nonstationarity. » Geographical analysis 28 (4). Wiley Online Library: 281‑298.
Calvo, Ernesto et Marcelo Escolar. 2003. « The local voter: A geographically weighted approach to ecological inference. » American Journal of Political Science 47 (1): 189‑204. https://doi.org/10.1111/1540-5907.00013.
Chi, Guangqing et Jun Zhu. 2019. Spatial regression models for the social sciences. SAGE publications.
Dubé, Jean, Julie Le Gallo, François Des Rosiers, Diègo Legros et Marie-Pier Champagne. 2024. « An integrated causal framework to evaluate uplift value with an example on change in public transport supply. » Transportation research part E: logistics and transportation review 185. Elsevier: 103500.
Dubé, Jean et Diègo Legros. 2014. Econométrie spatiale appliquée des microdonnées. ISTE Group.
Dubé, Jean, Diègo Legros, Marius Thériault et François Des Rosiers. 2017. « Measuring and interpreting urban externalities in real-estate data: A spatio-temporal difference-in-differences (stdid) estimator. » Buildings 7 (2): 51. https://doi.org/10.3390/buildings7020051.
Elhorst, JP. 2014. Spatial econometrics: from cross-sectional data to spatial panels. springer. https://link.springer.com/book/10.1007/978-3-642-40340-8.
Fotheringham, A Stewart, Chris Brunsdon et Martin Charlton. 2003. Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons.
Fotheringham, A Stewart, Martin Charlton et Chris Brunsdon. 1996. « The geography of parameter space: an investigation of spatial non-stationarity. » International journal of geographical information systems 10 (5). Taylor & Francis: 605‑627.
Fotheringham, A Stewart, Wenbai Yang et Wei Kang. 2017. « Multiscale geographically weighted regression (MGWR). » Annals of the American Association of Geographers 107 (6). Taylor & Francis: 1247‑1265. https://doi.org/10.1080/24694452.2017.1352480.
Geary, Robert C. 1954. « The contiguity ratio and statistical mapping. » The incorporated statistician 5 (3): 115‑146. https://doi.org/10.2307/2986645.
Gelb, Jérémy et Philippe Apparicio. 2022. « Cyclists’ exposure to air and noise pollution, comparative approach in seven cities. » Transportation Research Interdisciplinary Perspectives 14: 100619. https://doi.org/10.1016/j.trip.2022.100619.
Geniaux, Ghislain et Davide Martinetti. 2018. « A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models. » Regional Science and Urban Economics 72: 74‑85. https://doi.org/10.1016/j.regsciurbeco.2017.04.001.
Greenacre, Michael, Marina Martinez-Alvaro et Agustin Blasco. 2021. « Compositional data analysis of microbiome and any-omics datasets: a validation of the additive logratio transformation. » Frontiers in microbiology 12: 727398. https://doi.org/10.3389/fmicb.2021.727398.
Griffith, Daniel A. 1988. Advanced Spatial Statistics: Special Topics in the Exploration of Quantitative Spatial Data Series. Kluwer Academic Publishers.
———. 2003. Spatial filtering. Springer.
Griffith, Daniel A., Yongwan Chun et Bin Li. 2019. Spatial regression analysis using eigenvector spatial filtering. Academic Press.
Griffith, Daniel A. et Pedro R Peres-Neto. 2006. « Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. » Ecology 87 (10): 2603‑2613. https://doi.org/10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2.
Helbich, Marco et Daniel A. Griffith. 2016. « Spatially varying coefficient models in real estate: Eigenvector spatial filtering and alternative approaches. » Computers, Environment and Urban Systems 57: 1‑11. https://doi.org/10.1016/j.compenvurbsys.2015.12.002.
Isabella Gollini, Binbin Lu, Martin Charlton, Christopher Brunsdon et Paul Harris. 2015. « GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models. » Journal of Statistical Software 63 (17): 1‑50. https://doi.org/10.18637/jss.v063.i17.
Kelejian, Harry H et Ingmar R Prucha. 1998. « A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. » The journal of real estate finance and economics 17. Springer: 99‑121. https://doi.org/10.1023/A:1007707430416.
Kim, Chong Won, Tim T Phipps et Luc Anselin. 2003. « Measuring the benefits of air quality improvement: a spatial hedonic approach. » Journal of environmental economics and management 45 (1): 24‑39. https://doi.org/10.1016/S0095-0696(02)00013-X.
Le Gallo, Julie. 2002. « Econométrie spatiale : l’autocorrélation spatiale dans les modèles de régression linéaire. » Economie prevision 155 (4): 139‑157.
LeSage, James P et R. Kelly Pace. 2009. An introduction to spatial econometrics. 123. CRC Press.
Lu, Binbin, Martin Charlton et A Stewart Fotheringham. 2011. « Geographically weighted regression using a non-Euclidean distance metric with a study on London house price data. » Procedia Environmental Sciences 7: 92‑97. https://doi.org/10.1016/j.proenv.2011.07.017.
Mantel, Nathan. 1967. « The detection of disease clustering and a generalized regression approach. » Cancer research 27 (2): 209‑220.
Mennis, Jeremy L et Lisa Jordan. 2005. « The distribution of environmental equity: Exploring spatial nonstationarity in multivariate models of air toxic releases. » Annals of the Association of American Geographers 95 (2): 249‑268. https://doi.org/10.1111/j.1467-8306.2005.00459.x.
Moran, Patrick. 1948. « The interpretation of statistical maps. » Journal of the Royal Statistical Society. Series B (Methodological) 10 (2): 243‑251. https://www.jstor.org/stable/2983777.
———. 1950. « A test for the serial independence of residuals. » Biometrika 37 (1/2): 178‑181. https://doi.org/10.2307/2332162.
Murakami, Daisuke et Daniel A. Griffith. 2015. « Random effects specifications in eigenvector spatial filtering: a simulation study. » Journal of Geographical Systems 17. Springer: 311‑331.
Pace, R Kelley et James P LeSage. 2008. « A spatial Hausman test. » Economics Letters 101 (3): 282‑284. https://doi.org/10.1016/j.econlet.2008.09.003.
Paelinck, Jean. 1978. « Spatial econometrics. » Economics Letters 1 (1): 59‑63. https://doi.org/10.1016/0165-1765(78)90097-6.
Seya, Hajime, Daisuke Murakami, Morito Tsutsumi et Yoshiki Yamagata. 2015. « Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering. » Geographical analysis 47 (3): 284‑299. https://doi.org/10.1111/gean.12054.
Steimetz, Seiji SC. 2010. « Spatial multipliers in hedonic analysis: a comment on “spatial hedonic models of airport noise, proximity, and housing prices”. » Journal of Regional Science 50 (5): 995‑998. https://doi.org/10.1111/j.1467-9787.2010.00679.x.
Tobler, Waldo R. 1970. « A computer movie simulating urban growth in the Detroit region. » Economic geography 46 (sup1): 234‑240. https://doi.org/10.2307/143141.
Tsagris, Michail et Giorgos Athineou. 2025. Compositional: Compositional Data Analysis. s.n. https://CRAN.R-project.org/package=Compositional.
van den Boogaart, K. Gerald, Raimon Tolosana-Delgado et Matevz Bren. 2024. Compositions: Compositional Data Analysis. s.n. https://CRAN.R-project.org/package=compositions.
Wheeler, David et Michael Tiefelsdorf. 2005. « Multicollinearity and correlation among local regression coefficients in geographically weighted regression. » Journal of Geographical Systems 7 (2): 161‑187. https://doi.org/10.1007/s10109-005-0155-6.
Wood, Simon N. 2017. Generalized additive models: an introduction with R. Chapman; hall/CRC.